Temporary Bonding of Electronic Devices

Jared Pettit, Alex Brewer, Alman Law, and John Moore Daetec, LLC

Professional Development Course (PDC9)
IMAPS March 2015

2015 Arizona IMAPS Device Pkg Conference

1

Contents

- 1. Adhesion Theory & Temporary Applications
- 2. Wafers
- 3. Displays
- 4. Devices
- 5. Bibliography

2015 Arizona IMAPS Device Pkg Conference

1. Adhesion Theory & Temporary Applications

- A. Definitions
- B. Theory
- C. Key Properties & Measurement
- D. Applied Concepts

2015 Arizona IMAPS Device Pkg Conference

3

A. Definitions

- Coefficient of Thermal Expansion (CTE)
- Thickness
- Total Thickness Variation (TTV)
- Bow
- Warp
- Flatness
- Significant Contributor
- Bonded Stack
- Cost of Ownership (COO)

2015 Arizona IMAPS Device Pkg Conference

Coefficient Of Thermal Expansion (CTE)

 The fractional change in length or area or volume per unit change in temperature at a given constant temperature, typically presented as ppm/°C

2015 Arizona IMAPS Device Pkg Conference

Mechanical Energy

- Hook's law: F=kΔx
 σ=Εε
- (F=force, k=elastic constant, Δx =change in length, σ =stress, ϵ =deformation= $\Delta L/Lo$ where Lo=initial length, E=young's modulus/modulus of elasticity)
- By integration, energy U is:

$$U=1/2k (\Delta x)^2$$

As such, the area under σ vs. ϵ curve is energy U [J] per unit of volume [m3]

2015 Arizona IMAPS Device Pkg Conference

7

Thermal Expansion

- Silicone. Let's assume that we subject the sample to a change in temperature of 200K.
 For simplicity, we can assume a silicon bar of 300mm length (thickness=width=1mm)
- $\Delta L = \alpha_L * \Delta T * L_o$ [$\alpha = CTE$, $\Delta T = change temp]$
- ΔL=(300*1/K*10^-6)*200K*(0.3m)
- ΔL=1.08*10^-3 m

2015 Arizona IMAPS Device Pkg Conference

Deformation Energy

- How much energy represents this deformation of Silicone:
- ε=deformation=ΔL/Lo
- $\varepsilon = 1.08 \cdot 10^{-3}/0.3 = 0.0036 = 0.36\%$
- σ=E* ε
- σ=2GPa · 0.0036mm/mm
- σ=7.2MPa

This change in temperature is equivalent to applying 7.2MPa to the material

- U/Vol=area under the curve=1/2·σ·ε
- U/Vol=7.2MPa · 0.0036mm/mm
- U/Vol=13 · 10³ J/m³
- U=13 · 10^3 J/m³·3 · 10^{-7} m³
- U=3.89 · 10⁻³ J

2015 Arizona IMAPS Device Pkg Conference

9

How much does this energy represents to Silicon?

- Deform. Energy (assuming the same volume for Silicon sample)
- U=3.89 · 10⁻³ J
- U=13 · 10^3 J/m³·3 · 10^{-7} m³
- U/Vol=13 · 10³ J/m³
- U/Vol=1/2·ε · σ
- U/Vol=1/2·ε ·ε · Ε
- U/Vol=1/2·ε²E
- $\varepsilon = (2*13\cdot10^3 \text{J/m}^3/130 \text{GPa})^1/2$
- $\epsilon = 0.000446525 \text{ mm/mm}$
- $\epsilon = 0.045\%$

Conclusion: By using 13 \cdot 10³ J/m³

a linear deformation of **0.36%** was induced on Silicone. Using the same energy, a deformation of **0.045%** was induced in Silicon.

Therefore, per each unit of linear deformation that we have in the adhesive Silicone, we will have 1/806 of deformation in the Silicon carrier!!!!

2015 Arizona IMAPS Device Pkg Conference

Thickness

 The distance through a substrate between corresponding points on the front and back surface. Thickness is expressed in microns or mils (thousandths of an inch).

2015 Arizona IMAPS Device Pkg Conference

11

Total Thickness Variation (TTV)

- The difference between the maximum and minimum values of thickness encountered during a scan pattern or series of point measurements. TTV is expressed in microns or mils (thousandths of an inch).
- The maximum variation in substrate thickness.

2015 Arizona IMAPS Device Pkg Conference

TTV

1. Surface Profilometer

- Measure surface profile
- Quantify roughness of a surface
- Measure length: <3cm
- Measurable height: 100μm

2015 Arizona IMAPS Device Pkg Conference

13

TTV

2. Drop Gauge

• Thickness measurements are taken at 5 spots

- TTV = Max thickness Min thickness
- Thickness of wafer = average of the measurements

2015 Arizona IMAPS Device Pkg Conference

Bow

- Deviation of the center point of the median surface of a free, unclamped substrate from the median surface to the reference plane, where the reference plane is defined by three corners of an equilateral triangle.
- Concavity, curvature, or deformation of the wafer centerline independent of any thickness variation present.

2015 Arizona IMAPS Device Pkg Conference

Warp

- The difference between the maximum and minimum distances of the median surface of a free, unclamped substrate and a reference plane.
- Deviation from a plane of a substrate containing both convex and concave regions.

2015 Arizona IMAPS Device Pkg Conference

19

Flatness

- The deviation of the front surface, expressed in total indicator reading (TIR) or maximum focal plane deviation (FPD), reletive to a specified reference plane when the back surface of the substrate is ideally flat
- Deviation from a plane of a substrate containing both convex and concave regions.

Total Indicator Reading (TIR): The span of readings, from maximum to minimum, for any dimension measured

Focal Plane Deviation (FPD): The largest of the absolute values of the deviations from a reference plane.

2015 Arizona IMAPS Device Pkg Conference

Interposer Initial Bow/Warp

- Bow, measured by optical profilometry
- Beginning bow varies from 100-120um
- Convex shape
- Must reduce to <40um

2015 Arizona IMAPS Device Pkg Conference

Significant Contributor

- Any metric in which changes cause significant variations to the final outcome of a technique or process.
- Main effect (e.g. CTE difference in thermal)

2015 Arizona IMAPS Device Pkg Conference

23

Bonded Stack

 Bonded pair of a device substrate and a carrier substrate with an adhesive interface.

2015 Arizona IMAPS Device Pkg Conference

Cost of Ownership

 The full cost of embedding, operating, and decommissioning in a factory environment a process system needed to accommodate the required volume of a product material.

2015 Arizona IMAPS Device Pkg Conference

COO Defined (SEMI E35)

$$COO = \frac{F\$ + R\$ + Y\$}{L \times T \times Y \times U} = \frac{Costs}{Product}$$

Item	Definition
F\$	Fixed Costs
R\$	Recurring Costs
Υ\$	Yield Cost (scrap)
L	Equipment Life
Т	Throughput
Υ	Composite Yield
U	Utilization

$$\frac{\text{COO}_2}{\text{COO}_1} = \frac{\text{New Process}}{\text{Existing Process}}$$

2015 Arizona IMAPS Device Pkg Conference

27

COO Value Calculation Example

$$\frac{\text{COO}_2}{\text{COO}_1} = \frac{\text{New Process}}{\text{Existing Process}}$$

Item	Definition	COO ₂ vs. COO ₁	Explanation
F\$	Fixed Costs	F\$ ₁ = 5.1 X R\$ ₁ F\$ ₂ = -0- or 1.2 X R\$ ₂	Existing tool as Materials Use in-house wet bench (-0-) or new bench
R\$	Recurring Costs	R\$ ₂ = 0.75 X R\$ ₁	Materials Cost #2 (New) = 0.75 X #1 (Existing)
Y\$	Yield Cost (scrap)	Y\$ ₂ = Y\$ ₁ = 0	No loss for each tech.
L	Equipment Life	L ₂ = L ₁	Same life
Т	Throughput	T ₂ = 8.3 X T ₁	New vs Existing = 8.3 X T ₁
Υ	Composite Yield	Y ₂ = Y ₁	Same yield
U	Utilization	U ₂ = U ₁	Same maintenance

2015 Arizona IMAPS Device Pkg Conference

COO₂/COO₁ Comparison Results

Comparison of COO Technologies	Use in- house Wet Bench (Batch)	New Wet Bench (Batch)
COO ₂ /COO ₁	1.5%	3.2%

<u>Summary</u>: The COO of the new technology is projected to be between 1.5 - 3.2% of the COO of the existing technology (using in-house wet bench or buy new)

2015 Arizona IMAPS Device Pkg Conference

29

PP of New and Existing Lines

Payback Period Method	Use Existing Wet Bench (Batch)	New Wet Bench (Batch)
Throughput considered	<1mo	~1mo.
Remove Throughput	4mos	10mos

2015 Arizona IMAPS Device Pkg Conference

B. Adhesion Theory (Definitions)

- Adherend (substrate)
- Adherate (coating or adhesive)
- Adhering system
- Adhint (adhesive joint)
- Heterohesion (different)
- Homohesion (self)

2015 Arizona IMAPS Device Pkg Conference

31

Homohesion (Ex.)

- Glass fusion
- Glass on glass display manufacture
- Glass is a supercooled liquid. Under ideal conditions of cleanliness, glass contact causes fusion (ideal adhering system)

2015 Arizona IMAPS Device Pkg Conference

Adhesion Types

- Mechanical
- Adsorption
- Surface energy
- Electrostatic
- Diffusion
- Chemical
- Other (WBL, Viscoelastic, AB)

2015 Arizona IMAPS Device Pkg Conference

22

Mechanical (Interlocking)

- Adhesion proportional to surface roughness
- Adhesion proportional to surface area (porosity or roughness)
- Adhesion proportional to amount of adherend used to interact with the surfaces
- Maximize by knowledge of adherend (substrate) surface condition prior to application
- Measure by surface roughness (profilometer)

2015 Arizona IMAPS Device Pkg Conference

Drawbacks

- Roughness exceeds sufficient amount of adherend to make contact with such surface area
- Mechanics of bonding is not sufficient to allow adherend to make contact with surface area (i.e. insufficient pressure)

2015 Arizona IMAPS Device Pkg Conference

35

Adsorption

- Adherend (substrate) is porous
- Examples: wood, paper, porous metals or ceramics, and certain permeable polymers
- Adherate (adhesive) is applied as a casting, is absorbed and fixed into the surface

2015 Arizona IMAPS Device Pkg Conference

Surface Energy

- Basic requirement:
 - SE (adherate) < SE (adherend)</p>
 - Coatings preferred to be low surface energy
 - Substrates preferred to be high surface energy
 - Items can be maximized by surfactants (adherate/ coating) & surface treatment (adherend/ substrate)
 - Measure by contact angle & surface tension

2015 Arizona IMAPS Device Pkg Conference

37

Chemical Adhesion

- Covalent bonding between adherate (adhesive) and adherend (substrate)
- Coupling agents (primers) are common
- · Chemical reaction with the adherend
- · Coupling agent is commonly very thin
- · Coupling agent becomes the adherend
- Coupling agent exhibits chemical/mechanical adhesion with the adherate (photoresist)

2015 Arizona IMAPS Device Pkg Conference

Electrostatic Adhesion

- Static electricity polarization is established between two adherends using embedded electrodes in one surface
- Common with dielectric materials where electrical charges can be generated
- Electrostatic gripping devices

2015 Arizona IMAPS Device Pkg Conference

39

Diffusion Adhesive

- Common with thermoplastics
- Method includes thermal and chemical
 - Plastic to plastic bonding (i.e. lucite & TCA), where TCA is the temporary coupling agent
 - TCA facilitates co-mingling of adherate with adherend
- Common with application of paint (adherate) to plastic (adherend) forms

2015 Arizona IMAPS Device Pkg Conference

Reality Check				
Description	Reality			
2 x Perfectly Flat Substrate (TTV= 0.0Å)	Typical Wafer TTV <5μm Wafers Available TTV <1μm			
Perfectly Flat Adhesive (TTV= 0.0Å)	Typical Coating TTV <5μm Optimized Coating TTV <2μm			
Perfectly Flat Bonding Press (TTV= 0.0Å Closed) **DAETEC** 2015 Arizona IMAPS De	Typical Bonder TTV <2μm High End Bonder TTV <0.5μm vice Pkg Conference			

Look At Each Layer Independently

 To develop a temporary bonding process, it is useful to look at each layer in the Bonded Stack as a separate entity.

C. Key Properties and Measurement

- CTE
- Thermal Resistance
- Chemical Resistance
- Geometry (TTV, Bow, Warp, Size)

2015 Arizona IMAPS Device Pkg Conference

CTE Mismatch

- CTE is typically provided by materials suppliers.
- Stresses, observed as work unit deformation occurs due to a collusion of effects working in concert:
 - Adhesive/Carrier CTE Relationship
 - Adhesive Strain
 - Adhesive Tensile
 - Adhesive Thickness
 - Adhesion Force
 - Carrier Stiffness
 - Carrier Thickness

2015 Arizona IMAPS Device Pkg Conference

Thermal Resistance

- Thermogravimetric Analysis (TGA) is the most commonly used metric to qualify thermal stability of adhesive materials.
- Vacuum pump down time at temperature.

2015 Arizona IMAPS Device Pkg Conference

53

Chemical Resistance

· Various methods, gravimetric recommended

2015 Arizona IMAPS Device Pkg Conference

Warp

- More detailed than bow, but references the entire median plane
- TTV variations removed
- · Distance from the reference plane (RPD)

2015 Arizona IMAPS Device Pkg Conference

Geometry vs Forces

• Pressure required

to flatten substrate

- Surface Area
- TTV, CTE are "fixed"

2015 Arizona IMAPS Device Pkg Conference

D. Applied Concepts: Spin Coating

- Generate an in-house spin-speed curve for the material.
- Re-create this curve periodically, this simple test should indicate the stability of the R&D lab to coating variations.
- · Optimized spin coating
 - Devoid of particles
 - No bubbles
 - Flat
 - Lowest possible adhesive usage
 - Fastest possible cure
 - Covers all topography with a "safety zone"

2015 Arizona IMAPS Device Pkg Conference

Spin Coating

Edge Bead Is Too Tall

- Bonded region may be only on the edge bead, or on the center and edge bead.
- The edge bead can be eliminated by changing the spin process:
 - At the end of the spin process, a brief, high-speed spin to "throw off" the edge bead.*
 - At the end of the spin process, a brief, slow-speed spin with a solvent stream to "spray off" the edge bead.*
 - "Cut off" the edge bead with a razor blade after cure.*
- *Commercially available equipment is available to automate these processes.

2015 Arizona IMAPS Device Pkg Conference

67

Spin Coating

Coating Is Wavy

- A wavy surface can appear as grid like pattern of voids, radial spokes, or concentric circle.
- Wavy coatings can be eliminated by:
 - Increase lag time after dispense.
 - Dynamic dispense.
 - Slow acceleration to maximum spin-speed.
 - Decrease exhaust rate.
 - Low temperature soft bake (70-90°C).

2015 Arizona IMAPS Device Pkg Conference

Spin Coating

Irregular Tall/Short Region

- Irregular surface with no noticeable pattern, is usually due to bubbles, particles, or non-uniform viscosity.
- Irregular surfaces can be eliminated by:
 - Point of use filtration
 - Particle management in the lab
 - Degas sample prior to coating
 - Check dispensing nozzle for burrs and contamination

2015 Arizona IMAPS Device Pkg Conference

69

Adhesive Types

Parameter	100% Solids	Pressure Sensitive Adhesive (Tape)	Thermal Bonding
Bond Temp.	Room Temperature	Room Temperature	> Melting Point of Adhesive
Adhesive Treatment	Removal of Excessive Adhesive	Outgas at Process Temp.	Outgas at Process Temp.
TTV Control	Easy	Difficult	Easy
Bond Strength	Strong	Good	Good
Bubbles Removal	Apply Vacuum while bonding	Difficult	Apply Vacuum while bonding
Bond Pressure	Low	Low	High
Disadvantage	No Outgas Step	Hard to control TTV	High Temperature Bonding

2015 Arizona IMAPS Device Pkg Conference

Bonding

Why is Convex Bow Easy to Bond?

Substrate

Flat Silicon Wafer

The state of the state o

 This configuration can actually make a void free bond easier to obtain.

2015 Arizona IMAPS Device Pkg Conference

81

Bonding

Why is Concave Bow Difficult to Bond?

Adhesive Coated Bowed Substrate

Large Void Formation
Difficult To Remove

- Just by changing the orientation of the bow, bonding becomes much more difficult.
- This challenge can be overcome by applying pressure without applying heat (wafer can flatten before tack is developed)

2015 Arizona IMAPS Device Pkg Conference

2. Wafers

- A. Process Overview
- **B.** Carriers
- C. Commercialized Technologies
- D. Case Studies

2015 Arizona IMAPS Device Pkg Conference

Bond Types

- 100% Solids Wet Bond
 - Pro: Fast, low pressure/time/temperature bonding, easy to remove voids, covers large topography
 - Con: No post bake prior to bond, squeeze out
- Thermoplastic Bond
 - Pro: Well qualified, significant control of bonding
 - Con: High temperature/time/pressure bonding
- Pressure Sensitive Adhesive
 - Pro: Fast cure, low pressure/time/temperature bonding, TTV easy to control
 - Con: Difficult to remove voids, lower adhesion force

2015 Arizona IMAPS Device Pkg Conference

B. Carriers

- Silicon
- Glass
- Sapphire
- Tape

2015 Arizona IMAPS Device Pkg Conference

95

Carriers

Silicon

Property	Value
CTE, linear	2.6 ppm/°C
Hardness	7 Mohs
Shear Modulus	64.1 Gpa
Young's Modulus	129-186.5 Gpa

- Standard Carrier
- Preferred for most applications

2015 Arizona IMAPS Device Pkg Conference

Carriers

Glass

Property	Value
CTE, linear	3.1 ppm/°C
Hardness	5 Mohs
Shear Modulus	30.1 Gpa
Young's Modulus	73.6 Gpa

- Transparency is the key feature
- Structurally weak compared to other substrates

2015 Arizona IMAPS Device Pkg Conference

97

Carriers

Quartz

Property	Value
CTE, linear	0.55 ppm/°C
Hardness	7 Mohs
Shear Modulus	31 Gpa
Young's Modulus	72 Gpa

- Transparency is the key feature
- Structurally weak compared to other substrates

2015 Arizona IMAPS Device Pkg Conference

Carriers

Sapphire

Property	Value
CTE, linear	5.9-9 ppm/°C
Hardness	9 Mohs
Shear Modulus	145 Gpa
Young's Modulus	345 Gpa

- Structural integrity is the key feature
- High cost, # of recycles must be high

100

DATTEC

2015 Arizona IMAPS Device Pkg Conference

Carriers Perforated Almost exclusively sapphire Developed for chemical release

2015 Arizona IMAPS Device Pkg Conference

Carriers

Tape

- Ok for minimal post processing
- Minimal tooling required

2015 Arizona IMAPS Device Pkg Conference

101

C. Commercialized Technologies

- Overview
- Process Flows
- Pro/con

2015 Arizona IMAPS Device Pkg Conference

Debonding by Peeling

- Foil peeled off from adhesive after 350C
- Integrity based upon thickness, tool, & process
- Adhesive can be tunable to customer's process and requirements

DAETEC

2015 Arizona IMAPS Device Pkg Conference

Castable Substrates

- Slit or Spray Coat
- Debond Types:
 - Laser Ablation
 - Peel

2015 Arizona IMAPS Device Pkg Conference

Mixing DaeCoat[™] 310

310 Product	Description	9:1	8:2	7:3	6:4	5:5
Part 1	Polymer A	18	16	14	12	10
Part 2	Polymer B	2	4	6	8	10
Part 3	Solvent	80	30	30	30	30

^{*} Ratios reported relative to polymer A:B.

2015 Arizona IMAPS Device Pkg Conference

Debond Methods

Debond Method	Equipment	Throughput
Laser Ablation	Laser Ablation System	Low
Chemical	Wet Bench	High
Back Grinding	Grinding System	Low
Saw Separation	Diamond Saw	Low
Chemical Etching	Wet Bench	Low
Vacuum Pull	Vacuum Chuck	Medium
Peel	Peel Tool with Drum	Medium

2015 Arizona IMAPS Device Pkg Conference

(A)Peripheral Bond

Parameter	Standard Bond	Peripheral/Spot Bond	
Clarity	Adhesive Dependent	Not Applicable	
Thickness	< 30 um	Not Applicable	
Coat Method	Spin, Slit, Spray	Syringe Dispense	
Air Bubble	Pressure, Time, TTV	Not Applicable	
Cure Method	Thermal, Catalytic	Thermal, Catalytic	
Thermal Resistance	Less Concern	Adhesive Dependent	
Chemical Resistance	Less concern	Apart from Cleaner	
Align	Optical	Optical	
Debond Method	Not Debondable	Wet Chemical	
Equipment	Coater, Laser Ablator, Saw	Syringe Dispenser, Dip	

DATTEC

2015 Arizona IMAPS Device Pkg Conference

(A)Peripheral Bond: Comments

- Peripheral bond does not require 100% solids, transparency, or special debonding tools.
- Voids may not be a concern for many applications.
- Minimal adhesive usage (very large substrate may only be several grams)
- This permits many new polymers to be considers for peripheral Bond.
 - Polyimide (>450C stability)
 - Polybenzimidazole (>500C stability)
 - Glassy polymers (>500C stability)

2015 Arizona IMAPS Device Pkg Conference

(A)Peripheral Bond: Glass Fusion

- 2 Glass substrates bonded by peripheral bond
- Spontaneous thermal fusion between glasses can occur during high temp. processes (>350C)

2015 Arizona IMAPS Device Pkg Conference

Glass on Glass Bonding

- To prevent spontaneous thermal fusion at high, glass carrier is treated with surface coating before bonding
- Allows glass substrate to debond after high temp processing

Release Layer

Properties	PCA 130424-001	PCA 130610-003	
Appearance	Clear Liquid	Yellow Liquid	
Solid (%w/w)	~30%	~35%	
Compatibility	DMAC, NMP	DMAC, NMP	
Coating Method	Spin, Spray, Slit	Spin, Spray, Slit	
Cure Temp	350°C (20min)	350°C (20min)	
Polymer Type	Thermoplastic	Thermoset	
Transparency @ ≥ 380nm (%T)	>80%	>10%	
Thermal Resistance (Inert Atmosphere)	≤500°C	≤500°C	

2015 Arizona IMAPS Device Pkg Conference

187

Adhesive

Properties	PCA 120612-001	PCA 130804-001	CS-300
Appearance	Clear Liquid	Clear Liquid	Clear Liquid
Solid (%w/w)	100%	~80%	100%
Compatibility	THF, Dioxolane	PM, Xylene, THF	THF, Dioxolane
Coating Method	Spin, Spray, Slit	Spin, Spray, Slit	Spin, Spray, Slit
Cure Temp	150°C (10min)	350°C (20min)	150°C (10min)
Bond Method	Wet Bond	Dry Bond	Wet Bond
Transparency @ ≥ 380nm (%T)	>90%	>90%	>90%
Thermal Resistance (Inert Atmosphere)	≤400°C	≤450°C	≤400°C

2015 Arizona IMAPS Device Pkg Conference

4. Devices

- Desire to attach device, process, remove with no residue. Adhesive is thermal & chemical resistant, conforms to device substrate
- · Various adhesives are available
- Device substrates can be irregular
- Bond/edge seal (A) desired, best w/thickness
- Adhesive may be applied by several methods
- · Carrier recycle with cleaning
- Total cost must be considered

2015 Arizona IMAPS Device Pkg Conference

193

Thin Silicon Interposers (TSIs)

- Substrate ~100um thickness
- Underlying bumps ~100um height

DAETEC

2015 Arizona IMAPS Device Pkg Conference

Interposer Initial Bow/Warp

- Bow, measured by optical profilometry
- Beginning bow varies from 100-120um
- · Convex shape
- Must reduce to <40um

2015 Arizona IMAPS Device Pkg Conference

Ability to Bond & Seal w/Topography

Use of various DaeCoat products

Substrate	Peak to Valley (μm)	Warpage (μm)	Adhesive thickness <60µm	Adhesive thickness >60µm
#1	55	35	В	В
#2	14	<5	Α	Α
#3	26	23	В	В

A= Bond + Edge Seal (Ideal Process)

B= Bond

2015 Arizona IMAPS Device Pkg Conference

Configuration Description

Challenges

Thickness ~0.5mm
Uniformity <10% variability
Deliverability (i.e. coating vs film)

- Tape style highest cost, disposable peel layers
- Spin coat also high cost, waste >50%
- Slit coat lowest cost, display technology Each coating technology requires special product viscosity

2015 Arizona IMAPS Device Pkg Conference

22:

PSA Properties Development

- PSA coating properties: encapsulating
- Form as a thick film with release layers or coating onto substrate to create a thick film
- Very low outgas at >200C
- Simple removal in DIW, options:
 - Re-usable fixture to capture components
 - Simple tape apply to components during carrier release – similar to DaeBond 3D

2015 Arizona IMAPS Device Pkg Conference

Bibliography

- Bow and warp of semiconductor wafers and substrates. http://en.wikipedia.org/wiki/Bow_and_warp_of_semiconductor_wafers_and_substrates (accessed March 6, 2015).
- 2. ASTM F534 Standard Test Method for Bow of Silicon Wafers
- ASTM F657 Standard Test Method for Measuring Warp and Total Thickness Variation on Silicon Slices and Wafers by a Non-Contact Scanning Method
- ASTM F1390 Standard Test Method for Measuring Warp on Silicon Wafers by Automated Non-Contact Scanning
- ASTM F1530 Standard Test Method for Measuring Flatness, Thickness, and Thickness Variation on Silicon Wafers by Automated Non-Contact Scanning
- 6. ASTM F1241 Terminology of Silicon Technology
- Semiconductor Equipment and Materials International Materials Volume Appendix 1 Flatness Decision Tree
- 8. Thermogravimetric Analysis (TGA) Beginner's Guide. PerkinElmer: Waltham. 2010
- K. Zosche, T. Fisher, M. Topper, T. Frtzsch, O. Ehrmann, T. Itabashi, M. Zussman, M. Souter, H. Oppermann, T Braun, K. Lang. "Polyimide based Temporary Wafer Nonding Technology for High Temperature Compliant TSV Backside Processing and Thin Device Handling". SUSS Microtec.
- Brewer Science WaferBOND HT-1010 Temporary Wafer Bonding Material. Brewer Science Inc: 2010.
- 11. A. Jourdain, A. Miller, B. Swinnen. "Wafer bonding challenges for 3-D integration", Semi, Imec: 2010.
- 12. R. Delmdahl, R. Patzel, J. Brune. "Large-area laser-lift-off processing in microelectronics",

2015 Arizona IMAPS Device Pkg Conference

225

Contact for More Information

- DAETEC provides development, consulting, and technical training/support to solve manufacturing problems and introduce new options of doing business.
- Diversified Applications Engineering Technologies (DAETEC)
 Camarillo, CA (USA) (805) 484-5546
 <u>imoore@daetec.com</u>; www.DAETEC.com

2015 Arizona IMAPS Device Pkg Conference

