Washable Coatings for Packaging Practices

Alex Brewer^a, Alex Laymon^b, and John Moore^a ^aDaetec, LLC 1227 Flynn Rd., Unit 310, Camarillo, CA, 93012 USA ^bDPSS Lasers, Inc. 2525 Walsh Ave., Santa Clara, CA 95051 USA

> IMAPS Device Packaging Conference March 2016

Contents

- Washable Coating Defined
- Equipment
- Applications
- Summary

Washable Coating Defined

- Includes protective coating & adhesive
- Performs work function
- Removes without substrate compromise
- Washing includes water, detergent or nonhazardous solvents
- Washing conditions extremely mild, safe for common film frame tapes
- Match washable coating to process conditions

Aqueous Washable Polymers

PVA & PVP - Benefits

- Barrier
- Film Forming
- DIW Soluble

PVP

Drawbacks

- Low temp resistance
- Cross-linking
- Loss of solubility

Degree of Cross-linking vs. Cleans

 Highly Crosslinked materials require more aggressive means of washing

2016 Arizona IMAPS Device Pkg Conference

5

Improved Thermal Resistance

Thermal Resistance

- Chemical functionality
 - Phenyl
 - Polyester

DaeCoat[™] Systems

- Phenyl silicones
- Polyphenylsulfones
- Salt conjugates

Thermal Resistant Washable Coatings

Washable Polymers - Solvent

- Good Thermal resistant
- Excellent Coating Qualities
- High Resistance to Fab Process Chemicals
- Formulate to allow easy rinseability after high temp processing

Activator monomer (MW & shape) Silicone Polymer

2016 Arizona IMAPS Device Pkg Conference

8

Silicone Chemical Resistance

Chemical Exposure (@ 25°C)	Time (min)	Effects	
NMP	30	No Attack	
Acetone	30	No Attack	
TMAH (2.38%)	30	No Attack	
KOH (1%)	30	No Attack	
СН ₃ СООН (9-10%)	30	No Attack	
H ₃ PO ₄ (68-69%)	30	No Attack	
HNO ₃ (4~5%)	30	No Attack	
H ₄ C ₂ O ₄	30	No Attack	
PGMEA	30	No Attack	
MEA	30	No Attack	
DMSO	30	No Attack	

Desired Properties

Property	Protective Coating	Temporary Bond
Simple application (spin, spray)	Х	X
Simple curing (<15min)	Х	Х
Able to planarize large features	Х	X
Thermal Resistant (>300C)	Х	X
Low outgas for vacuum processing	Х	Х
Resist fab process chemicals	Х	X
Mechanical integrity for grind/polish	N/A	X
Simple debond & cleans (porous support)	N/A	X
May use different carriers	N/A	X

Equipment

- Spin
- Slit
- Spray
- Film

Wafer Grinding & Testing

Strausbaugh

- Use a local grind/polish firm (Arizona, USA)
- Equipment is consistent with that used in fabs
- Scientists have a high degree of experience

Process

Laser Scribing

Small Spot Sizes Cold UV Marking Easy To Use Software Fast Scanning Speeds Integrated UV Marking Solution < 700 Watt Single Phase Utility Required Field Proven Model 3500 Series 355 nm Laser Materials Can Be Marked, Engraved, Scribed, Cut Or Drilled

Substrate Types

- Rigid: silicon, quartz, glass, sapphire
- Flexible: PI, PEN, Arylite, PPS, PET, epoxy
- Ideal characteristics: CTE match, low TTV
- Other qualities: transparency, tensile, barrier
- Dimensions: application specific

Solid Carriers

- Silicon
- Glass
- Sapphire
- Tape

2016 Arizona IMAPS Device Pkg Conference

15

Porous Carriers

• SUS304, Titanium, Ceramic film

Experimental

- 1. Wafer Thinning green solvent wash
- 2. LTCC DIW wash
- 3. Wafer Planarization green solvent wash
- 4. Wafer Thinning detergent wash
- 5. Laser Processing DIW wash

#1: Wafer Thinning

2016 Arizona IMAPS Device Pkg Conference

Process Demand

- **Objective:** Wafer thinning, backside processing
- Mechanical (e.g. grind): Yes
- Thermal resistance: <300C
- Process/chemicals: Yes
- Uniformity: ~2um

Recommendation

- DaeCoat[™] 355
 - Green solvent washable,
 DaeClean[™] 300
 - Broad chemical resistance
 - Thermal resistance: >300C
- **Carrier:** Solid, due to small die, simple release/cleans
 - chemical diffusion
 - recycled

#1 – Thinning, Processing, Release

Grinding, backside processing, singulation

Singulation offers 1-2mm channel between devices to enable simple debond & wash

Green Solvent Wash Adhesive

Products: DaeCoat[™] 355 (dry bond adhesive) + DaeClean[™] 300 (solvent cleans)

Green Solvent Wash Adhesive

Debond Process: Dice and Chemical Debond

#2: Low Temp Co-fired Ceramic

Process Demand

- Objective: LTCC flip-chip bond & encapsulate
- Mechanical (e.g. grind): No
- Thermal resistance: ~275C
- Process/chemicals: limited, RT flux cleaner
- Uniformity: <10%

Recommendation

- **DaeCoat[™] 535**
 - Hot DIW washable
 - RT chemical resistance
 - Thermal resistance: >300C
- Carrier: Porous
 - chemical diffusion
 - recycled

LTCC/HTCC

- Microelectronics on a ceramic substrate
- Multi-layer packaging
- MEMS, military, RF, wireless
- Thickness <50um to >250um
- Commonly 100-150um
- <u>Green tape</u> several suppliers
- Extremely fragile handling challenge!

2016 Arizona IMAPS Device Pkg Conference

24

DIW Wash Adhesive (LTCC)

Products: DaeCoat[™] 535 (hot DIW washable)

DIW Wash Adhesive (LTCC)

#3: Wafer Planarization

Process Demand

- Objective: Wafer planarizing coating for backside processing
- Mechanical (e.g. grind): No
- Thermal resistance: <300C
- Process/chemicals: Yes
- Uniformity: <5%
- Special: Desire to finish on FF tape

Recommendation

- **DaeCoat[™] 357**
 - Green solvent washable,
 DaeClean[™] 300
 - Broad chemical resistance
 - Thermal resistance: >300C
- **Carrier:** desire FF tape
 - Safe for DaeClean[™] 300

Washable Planarization Coating

Washable Planarization Coating

Products: DaeCoat[™] 357 (UV curable silicone)

Temperature / Vacuum stressing

- No outgassing of the 250 um DaeCoat 357 coating layer during 40min exposure to 200°C at high vacuum.
- This test was done to test if coating can survive typical PVD and PECVD process conditions.

Washable Planarization Coating Sputtering Test

Sputter deposition of 200nm Ti:W + 300nm Copper on 250µm thick DaeCoat 357 using LLS802 multi target tool

wafer with 100:1 mix ratio after sputtering

wafer with 50:1 mix ratio after sputtering

Chamber Capability: 24 x 4" - 6" wafers per batch 8 x 8" wafers per batch 4 x 300 mm wafers per batch

Washable Planarization Coating

Etching Test

Removal of 300 nm Copper + 200 nm Ti:W from 250 um thick DaeCoat 357 by wet chemical etching

wafer with 100:1 mix ratio after wet chemical etching

wafer with 50:1 mix ratio after wet chemical etching

Washable Planarization Coating

Cleaning Test

Removal of 250 um thick DaeCoat 357 by DaeClean 300

2016 Arizona IMAPS Device Pkg Conference

32

#4: Wafer Thinning

Process Demand

- Objective: Wafer grind & backside processing
- Mechanical (e.g. grind): Yes
- Thermal resistance: <200C
- Process/chemicals: Yes
- Uniformity: ~2um

Recommendation

- DaeCoat[™] 615
 - Detergent washable,
 DaeClean[™] 150
 - process chemical resistance
 - Thermal resistance: >200C
- Carrier: Solid or porous; may thermal release or use FF tape support

Detergent Washable System

Products: DaeCoat[™] 615

Detergent Washable System

Function Wafer w/o DaeCoat 615

Function Wafer w/ DaeCoat 615

Detergent Washable System

No coating

With DaeCoat 615

2016 Arizona IMAPS Device Pkg Conference

Before Cleans

After Detergent Cleans

36

#5: Laser Protective Coating

Process Demand

- **Objective:** Laser scribe
- Mechanical (e.g. grind): No
- Thermal resistance: N/A
- Process/chemicals: No
- Uniformity: <1%

Recommendation

- **DaeCoat[™] 515**
 - DIW washable
 - Thermal resistance: >300C
- Carrier: N/A

Washable Coating for Laser

Coating and Cure Spin 20 um,

Cure 150 C 5 min

Laser Process

355 nm Laser @ 30 KHz @ 25nSec (100 uJ per pulse) DIW Wash RT 1 min Scribed Substrate RT 1 min

Washable Coating for Laser

- Scribe on Silicon
- 20 um line width
- 25 passes
- Pictures taken after Laser Scribe process, DIW rinse

PVP Based Laser Coat

PVA Based Laser Coat

DaeCoat 515 Laser Coat

Parameter	DaeCoat™ 355	DaeCoat™ 357	DaeCoat™ 515	DaeCoat™ 535	DaeCoat™ 615
Coating Thickness	<5-100 um	<5-250 um	<5-100 um	<5-60 um	<5-60 um
Cure	UV/Thermal	UV/Thermal	Thermal	Thermal	Thermal
Max temp	~300C	~300C	~300C	~300C	~200C
Application	Temp Bonding or Coating	Temp Planarizing Coating	Laser Processing	Temp Bonding or Coating	Temp Bonding or Coating
Resists RT DIW*	v	~	×	~	~
Resists Acids*	~	~	*	*	~
Resists Litho Stripper Chemistries*	~	~	*	×	*
Clean Conditions	DaeClean™ 300 (Safe Solvent)	DaeClean™ 300 (Safe Solvent)	RT DIW	80C, DIW	DaeClean™ 150 (Detergent)

Summary

- Washable coatings to support temporary protective coating or bonding applications
- Degree of crosslinking, process temperature influence ability to easily wash off substrate
- Polymeric system's chosen based on customer's process conditions
- Select those systems that exhibit enough robustness, easy washability

Special Thanks to...

2016 Arizona IMAPS Device Pkg Conference

• Fraunhofer IZM

– Kai Zoschke, Matthias Wegner

- DPSS Lasers, Inc.
 - Alex Laymon
- Daetec
 - Jared Pettit, Alman Law

42

Contact for More Information

- DAETEC provides development, consulting, and technical training/support to solve manufacturing problems and introduce new options of doing business.
- Diversified Applications Engineering Technologies (DAETEC)

Camarillo, CA (USA) (805) 484-5546

jmoore@daetec.com; www.DAETEC.com

