Temporary Bonding of Wafers, Displays, and Components

Jared Pettit, Alex Brewer, Alman Law, and John Moore Daetec, LLC

IMAPS Device Packaging Conference March 2015

Contents

- 1. Adhesives & Substrates
- 2. Wafers
- 3. Displays
- 4. Devices

Electronics Everywhere

- Auto & Medical diagnostics
- Aircraft entertainment
- Communication
- IOT surveillance & traffic

2015 Arizona IMAPS Device Pkg Conference

Thin Substrate Market Drivers

- Electronics trending thinner
- Smart phones, tablets, etc.
- Diced chips are stacked
- Stacked chips used in all functional devices
- Extremely fragile
- Requires a temporary support

1. Adhesives & Substrates

- Matched to substrate needs
- Surface energy (lower vs substrate)
- Thermal & chemical resistant
- Low outgas (high Tg or barrier)
- Inert & easy to clean

World of Temporary Bonding

Work Unit	Market	DaeCoat TM	Method	
Organic Film	OLED,	350	Cure on carrier, bond w/pressure	
Organic Film (cast)	flexible displays	310	Cure on carrier, cast & cure liquid	
Thin glass	TFT LCD	350	Cure on carrier, bond w/pressure	
Foil	OLED, flexible displays	350	Cure on carrier, bond w/pressure	
Wafer	3DIC	350, 615, 620	Planarize wafer w/550, cure on carrier, bond w/pressure	
Die (chip)		350	Cure on carrier, bond w/pressure	

Substrate Types

- Rigid: silicon, quartz, glass, sapphire
- Flexible: PI, PEN, Arylite, PPS, PET, epoxy
- Ideal characteristics: CTE match, low TTV
- Other qualities: transparency, tensile, barrier
- Dimensions: application specific

Engineering Polymers

Typical PI Transparency Thermal Trend

Silicone Thermoset (catalytic)

Resin monomer (MW & shape)

Free-Radical

Activator monomer (MW & shape)

Silicone Polymer

Silicone 400C Thermal Resistance

Adhesive in Several Forms

- The adhesive may be applied on the edges of the carrier – known as peripheral bond
- Thin substrate is bonded onto carrier
- Adhesive undergoes heat cure

☼ 7.periph. bond

2. Wafers

- Wafers thinned to <100um
- Carriers are required
- Debonding generates problems, can be a bottleneck, high cost, and source of yield loss

Creating a Process

- Device Wafer: planarized, edge trim (thickness)
- Carrier: CTE closely matched, TTV <2um
- Adhesive: thermal & chemical resistant, thin & uniform, if thick (high modulus)
- Bond: low temp (CTE)
- Debond: passive & cleans complete

Planarization Coating

DaeCoat[™] 515 – DIW washable

Carriers

- Silicon
- Glass
- Sapphire
- Tape

Porous Carriers

Perforated Glass, 50 μm

Black: Surface Scan of Perforated carrier Red: Surface Scan of ground wafer with perforated carrier

Divots from glass pores

Surface Scan shows the divots from glass pores

Porous Carrier

Benefits

- Thermal & chemical resistant
- Simple bond, high adhesion
- Accepts many adhesive types
- Passive debond (chemical diffusion)
- Device wafer on film frame
- Recycle >10X

Porous Metal Carrier Media

Ti Porous Metal (Microscopic)

Surface Scan of Porous Ti

Ti has stray wires reaching <80μm

Angstrom

Porous Metal Carrier Polishing to TTV

Surface Treatment

Without Exclusion Layer

With Exclusion Layer

Wafer Grinding & Testing

Strausbaugh

- Use a local grind/polish firm (Arizona, USA)
- Equipment is consistent with that used in fabs
- Scientists have a high degree of experience

Process

Commercial Technologies

	BSI (Zonebond)	3M	TMAT	Dupont	Dow Corning	DOW
Bond type	Thermoplastic	Thermoset	Thermoset	Thermoplastic	Thermoset	Thermoplastic
Debond type	Slide + CRT /Peel	Laser, Peel	Peel	Laser + CRT	Peel	Peel
Tooling	Thermoslide/Peel tool	Laser tool, Peel tool	Peel tool	Laser tool, Peel tool	Peel tool	Peel tool
Post processing	Cleans, tape isolation	Cleans, Tape isolation	Cleans, Tape isolation	Cleans, Tape isolation	Cleans, tape isolation	Cleans, tape isolation
Temperature	≤250°C	≤250°C	≤300°C	≤450°C	≤300°C	>300°C
Additional challenges	Cleans	Transparent carriers	None	Transparent carriers Lengthy curing cycle	Cleans	None
Key benefits	RT Debond	RT Debond	RT Debond	High temp processing, RT debond	RT Debond	High temp processing, RT debond

Process Flow – Porous Carrier

Silicon Substrate Subsequent Steps Thin Debond Apply Adhesive Apply Adhesive to silicon device Subsequent Steps Thin Debond Dry-Bond 25-30C, 5min in Bonder (Pressure ~15psi)

3. Displays

Discussion

Model of thin substrate peeling with adhesive layer, minimizing bubble formation

Bubble Model

Bubble forms when force of irregularity > adhesive

Force exhibited by gas or other irregularities

Adhesive strength as exhibited by adhesive layer

Adhesive: DaeCoat™ 310

PI or Similar Coating

Daetec's Polyimide: DaeCoat™ 210

2015 Arizona IMAPS Device Pkg Conference

1000-2000rpm (60sec)

High Volume Manufacturing

DaeCoatTM 310 components are stable for long shelf-life prior to mixing.

Glass on Glass Bonding

- To prevent fusion, carrier is treated
- Allows glass substrate to debond after high temp processing

Controlled Adhesion: Edge Pull

Low Bond Force Weaker Adhesive

4. Devices

Thin Silicon Interposers (TSIs)

- Substrate ~100um thickness
- Underlying bumps ~100um height

Top side

Bottom side (contains solder bumps)

Application

Post-Bonding Process

Adhesive Planarization

Planarization and Thermal

Porous Carrier

Porosity higher for inside material (A). Outer coating (B) is lower porosity **Porous** A = 0.5 - 0.8mm Carrier B = 0.1 - 0.25mm C = 0.5 - 1 mmTSI on adhesive

Results - baseline TSI

Results - Bonded TSI

Variation <12um

Type1, 2, F PeripheralNW Porous Subst

Results – DeBonding

Prior activity involved applying adhesive to interposer & silicon wafer, holding interposer in place

Bond interposer to silicon wafer, observe flatness and other process details

Debond from silicon in Daetec digesting fluid, observe time

Devices (cont.)

- Desire to attach device, process, remove with no residue. Adhesive is thermal & chemical resistant, conforms to device substrate
- Various adhesives are available
- Device substrates can be irregular
- Bond/edge seal (A) desired, best w/thickness
- Adhesive may be applied by several methods
- Carrier recycle with cleaning
- Total cost must be considered

Component Bonding

Small Devices for Thermal Processing

Appearance of Bottom

Name	#1	#2	#3
Dimension	0.95cm x 0.95cm	1.65cm x 1.15cm	0.95cm x 0.95cm
Overview			
Microscopic Picture			

Process Description

Process Description

Adhesive is applied as a film to carrier on Thick Glass, Open-Faced

Substrate Description

Surface Scan (Bottom of Substrate #1)

Surface Scan (Top of Substrate #1)

Ability to Bond & Seal w/Topography

Use of various DaeCoat products

Substrate	Peak to Valley (μm)	Warpage (μm)	Adhesive thickness <60µm	Adhesive thickness >60µm
#1	55	35	В	В
#2	14	<5	Α	Α
#3	26	23	В	В

A= Bond + Edge Seal (Ideal Process)

B= Bond

Adhesive Film - Options

Use as B-stage film, thickness can vary

Slit-coating to substrates,
SB cure, process as
desired

Film w/Release Layers

- Aqueous-based adhesive
- Thickness = 20mil ~500um ~0.5mm
- No backing
- Sandwiched between PET release layers
- Remove 1st PET liner, apply to substrate
- Use a rubber roller, apply exposed adhesive to substrate, increase pressure onto PET facing up, remove 2nd PET liner, proceed with bonding

Slit Coating

Cost Considerations

Parameter	Film w/release liners	Spin Coating	Slit Coating
Coating solids (%)	80-100	<100	100
Cost (\$/cm2)*	<0.05	<0.05	<0.02
Convenience	High	Med	Med
Tool Required	-none-	coater	coater

^{*}assume best case conditions with max solids for coating capability

UV Cure Film/Coating

Debond/Rinsing

Summary

- Temporary bonding technologies are being used for wafers, displays, and devices
- Key practices include variations around peel practices
- Cross-pollination continues to drive more creative development in different markets
- Improved yield, cost control, and simplicity are drivers

Contact for More Information

- DAETEC provides development, consulting, and technical training/support to solve manufacturing problems and introduce new options of doing business.
- Diversified Applications Engineering Technologies (DAETEC)
 Camarillo, CA (USA) (805) 484-5546
 imoore@daetec.com; www.DAETEC.com

